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1 PreliminariesOblivious (or ordered) read-once branching programs become an importanttool in the �eld of digital design and veri�cation (see, for example, [8] and[22]). In these �elds they are also known as \OBDDs" (ordered binary deci-sion diagrams). There are some important practical functions which are hardfor OBDDs. One of such functions is integer multiplication [7]. The otherfunction is testing multiplication for which there is an exponential lowerbound (2
(n1=4)) known for nondeterministic OBDDs [12]. An interestingopen problem remained whether randomization can help in computation ofthese functions by OBDDs. In this paper we show, �rstly, that the methodof [4] yields polynomial size (O(n6 log4 n)) bound for the latter function forrandomized OBDDs. Interestingly, it is known that computing this func-tion with deterministic read-once branching programs is as hard as integerfactoring [22, 15]. Further we prove an exponential lower bound 2
(n= logn)on the size of any randomized OBBD computing integer multiplication.During last decade there were several attempts to �nd generalizationsof OBDDs model for hardware veri�cation, strong enough to compute e�-ciently integer multiplication. But again the results showed that multiplica-tion remained hard for these models ([11, 15]).In [4], a randomized model of branching programs was introduced. Theimportance of this model was highlighted by the fact that there is a functionwhich is hard for deterministic OBDDs but is easy for randomized OBDDs[4]. During the last couple of years new examples of such function werepresented by di�erent authors. For example, clique-only function is hardfor nondeterministic syntactic read-k-times branching programs [5] but issimple for randomized OBDDs [18, 20]. See [21] for another example.It was proved that randomized and nondeterministic models of OBDDare incomparable [2]. So there was still hope (note that multiplication is hardfor nondeterministic OBDD [11]) that randomized OBDDs can compute in-teger multiplication in polynomial size. Our results show that randomizedOBDDs can test integer multiplication in polynomial size but integer mul-tiplication itself requires exponential size.Up to now it was not clear what is harder to multiply or to test themultiplication (see [16] for more information). It is known that DMULT(testing multiplication) is hard for syntactic nondeterministic read-k-timesbranching programs [12]. Note that DMULT function is AC0 equivalentto MULT [9]. Our result answers also to the open problem raised in [22]about succinct representations for functions DMULT and MULT .2



We recall now basic de�nitions ([17]).A deterministic branching program P for computing a boolean functiong : f0; 1gn ! f0; 1g is a directed acyclic multi-graph with a distinguishedsource node s and a distinguished sink node t. The out degree of of eachnon-sink node is exactly 2 and the two outgoing edges are labeled by xi = 0and xi = 1 for variable xi associated with the node. Call such node an xi-node. The label \xi = �" indicates that only inputs satisfying xi = � mayfollow this edge in the computation. The branching program P computesa function g in the obvious way: for each � 2 f0; 1gn we let f(�) = 1 i�there is a directed s � t path starting in the source s and leading to to the(accepting) node t such that all labels xi = �i along this path are consistentwith � = �1; �2; : : : ; �n.We de�ne a randomized branching program [4] as a program having inaddition specially designated random (\coin-toss") inputs. When values ofthese random inputs are chosen from the uniform distribution, the outputof the branching program is a random variable.We say that a randomized branching program (a; b)-computes a booleanfunction f if it outputs 1 with probability at most a for input � such thatf(�) = 0 and outputs 1 with probability at least b for inputs � such thatf(�) = 1. For 1 � p > 1=2 we write shortly \p-computes" instead of\(1�p; p)-computes". A randomized braching program computes a functiong with on-sided error if it (�; 1)-computes g.We de�ne the size of (P ), size(P ), (complexity of the branching programP ) as the number of its internal nodes.Read-once branching program is a branching program in which everyvariable is tested at most once in every path. A � -ordered read-once branch-ing program is a read-once branching program which respects an ordering� of the variables, i.e. if an edge leads from an xi-node to an xj-node, thecondition �(i) < �(j) has to be ful�lled. An OBDD (alternatively orderedread-once branching program) is a � -ordered read-once branching programrespecting some ordering � of variables.2 ResultsWe start with de�ning a boolean decision function: the testing integer multi-plication function (or alternatively, decision problem of recognizing the graphof multiplication) DMULT as follows. DMULT : f0; 1g3n ! f0; 1g andDMULT (X; Y; Z) = 1 i� XY = Z. Here X; Y , and Z are binary represen-3



tations of integer numbers, jX j = jY j = n, jZj = 2n.Theorem 1 Function DMULT can be computed by a randomized OBDDwith one-sided "(n)-error of sizeO n6"5(n) log4 n"(n)! :Proof. Uniformly at random select a prime number p from the setQd(n) = fp1; : : : ; pd(n)g, d(n) = O(n), of �rst d(n) primes. Then deter-ministically count a = X mod p, b = Y mod p, multiply ab, then countc = Z mod p, and verify whether ab = c. If ab = c then accept an in-put else reject. Chinese reminder theorem provides the correctness of suchcomputation and �ngerprinting arguments of [4] provide a correct result oftesting XY = Z mod p by randomized OBDDs with high probability. Allthese manipulations can be done by a polynomial size randomized OBDDP constructed below.Phase 1. (randomized). Choose d(n) to be some function in O(n), s.t.d(n) > 4n. P randomly selects a prime number p from the set Qd(n) =fp1; p2; : : : ; pd(n)g of �rst d(n) prime numbers.P uses t = dlog d(n)e random bits for selecting a prime number p. Preads random bits in the order �1; : : : ; �t. � = �1 : : : �t is interpreted asbinary notation of a number N(�). P selects i-th prime number pi 2 Qd(n)i� N(�) = i mod d(n).Phase 2. (deterministic). During a computation path P counts a =X mod p, by reading consequently bits from X . P stores a by internal node(state). Then, P counts b = Y mod p and stores the product ab. At last Pcounts c = Z mod p and verify whether ab = c. If ab = c then it accepts elseit rejects.So, if XY = Z, then P with probability 1 outputs the correct answer. IfXY 6= Z, then it can happen that XY = Z (mod p) for some p 2 Qd(n).In these cases P makes an error.For XY 6= Z we have jXY � Zj � 22n < p1 � � �p2n where p1; : : : ; p2n arethe �rst 2n prime numbers. This means that in the case when XY 6= Z, theprobability "(n) of the error of P on the input X; Y; Z is less than equal to4n=d(n) (less than equal to 2n=d(n) if t is a power of 2).For p 2 Qd(n) denote by Sp a deterministic subprogram of P that carriesout the deterministic part of computations of the phase 2 with the prime p.4



The size of P is bounded by2t+1 � 1 + Xp2Qd(n) size(Sp):Sp has the length 3n. For the realization of the procedure describedin the phase 2 it is su�cient to store in the internal nodes four numbers:X mod p; Y mod p;XY mod p and Z mod p. The i-th prime is of orderO(i log i). Therefore we havesize(Sp) = O(np4) = O(n(d(n) logd(n))4):>From the above upper bounds for the size(Sp), size(P ) and from theupper bound for "(n) ("(n) < 4n=d(n)), the upper bound of the theoremfollows.We de�ne now integer multiplication function MULT as follows. Thefunction MULTk : f0; 1g2n ! f0; 1g computes the k-th bit, 0 � k � 2n� 1in the product of two n-bit integers. That is MULTk(X; Y ) = zk whereX = xn�1 : : : x0, Y = yn�1 : : :y0, and Z = z2n�1 : : : z0. Now denote byMULT function MULTn�1 which computes the middle bit in the productxy. It is known that the middle bit is the \hardest" bit (see, for example[15]).For p 2 (1=2; 1), k 2 f0; : : : ; 2n� 1g, and a permutation � of f1; : : : ; 2nglet Pp(k; �) be a randomized OBDD with the ordering � that p-computesMULTk.Theorem 2 Given p 2 (1=2; 1). For every � there exists a k such thatsize(Pp(k; �)) � 2n(1�H(p))=8;where H(p) = �p log p� (1� p) log(1� p) is Shannon entropy.Theorem 3 Let for p 2 (1=2; 1) the function MULT (X; Y ) is p-computedby a randomized OBDD P . Thensize(P ) � 2
(n= logn):These two theorems state that multiplication is hard for randomizedOBDD. The �rst one is \theoretically weaker" than the second. But the5



proof of the �rst one is shorter and more direct. It is based on provinglower bound for the polynomial projection function of MULTk ([6]). Theproof of the theorem 3 itself is based on proving lower bound for anotherpolynomial projection of MULT [7, 11] using randomized binary searchcommunication game. See [14, 13] for more information. Proofs of thetheorems are presented in the next section.3 Proofs3.1 Proof of the theorem 2Our proof proceeds as follows:i) we construct a polynomial projection fk;� of MULTk and thenii) we prove that fk;� is hard for a randomized � -ordered OBDD.For an arbitrary ordering � in a randomized OBDD, there are two subsetsL and W of equal sizes l � n=2 such that:1) P reads all variables from L before starting reading variables from Wand2) L � X and W � Y or L � Y and W � X .W.l.g. assume in the rest of the proof that L � X and W � Y . So,L = fxi1 ; : : : ; xilg and W = fyj1 ; : : : ; yjlg.>From now on we are interested only in inputs � 2 f0; 1g2n such that:for variables Y all bits of � except for a one bit of W are 0. Call such Wcontrol set. Variables from L can take arbitrary values from f0; 1g. Forconvenience �x the remaining variables from XnL to be 0. Call such L dataset.Denote by [k] a set of pair of bits of data and control sets that aretransmitted to the k-th bit of the product XY . Formally[k] = f(xi; yj) 2 L�W : i+ j = kg:As jL�W j = l2 � n2=4, there exists a k such thatj[k]j = t � l2=(2n) = n=8: (1)Now �x this set [k]. Denote by Lk � L (Wk � W ) a subset of L (W )that consists of all variables xi (yj) that \take part" in the set [k].Consider a projection fk;� : Lk �Wk ! f0; 1g of MULTk, for which allvariables from (Y [X)n(Lk[Wk)) are �xed and equal 0. The communicationmatrix CM of fk;� for a partition (Lk;Wk) of inputs has the following6



property:1) it is 2t � t boolean matrix and2) all rows of CM are di�erent.We use now Yao's standard randomized one-way communication com-putation [23, 24] (see also [13]) for boolean functions.The following lemma is proved in [2]. It states the connection betweenthe size of OBDDs and the one-way communication complexity. Consider aboolean function h : f0; 1gm ! f0; 1g. Let U = V �R be partition of a set ofvariables of h into two parts. For p > 1=2 denote by PCUp (h) a randomizedone-way communication p-computation for h (a computation which outputsthe correct result with the probability greater or equal to p) according tothe partition U of inputs.Lemma 1 Let " 2 [0; 1=2], p = 1=2 + ". Let a randomized OBDD P p-computes the function h. Let U = V � R be a partition of inputs betweenplayers with V and R de�ned according to ordering � of inputs of P . Thatis P can read variables from R only after reading variables from L and doesnot read variables from L after starting reading variables from R. Thensize(P ) � 2PCUp (h)�1:Now use the theorem proved in [1] which states that the randomizedone-way communication complexity cannot be too \small" for a functionwith a \large" data set and a \small" control set.Choose a set Z � R such that for an arbitrary two words u; u0 2 V thereexists a word y 2 Z such that h(u; y) 6= h(u0; y). The set Z is called thecontrol set for the matrix CM .Denote by ts(CM) the minimum size of a control set for matrix CM andnrow(CM) the number of di�erent rows of matrix CM .For a number p 2 [1=2; 1], de�ne (probabilistic communication charac-teristic (cf. [1])) pccUp (h) = ts(CM)lognrow(CM)H(p), where H(p) = �p log p� (1�p) log(1� p) is the Shannon entropy [10].Theorem 4 ([1]) Let " 2 [0; 1=2] and p = 1=2+". Let U � f0; 1gn be suchthat U = V � R, where V and R are de�ned in according to partition � ofinputs of function h : f0; 1gn ! f0; 1g. ThenPCUp (h) � DCU(h)(1� pccUp (h))� 1;where DCU (h) is the deterministic one-way communication complexity ofh. 7



In our case we have that 1) for U = Lk �Wk pccUp (fk;�) = H(p) and 2)DCU(fk;� ) = log t (because all rows of the communication matrix CM aredi�erent). From the above we get thatsize(P ) � 2t(1�H(p)):Using (1) and the inequality above we get the lower bound of the theo-rem.3.2 Proof of the theorem 3The proof consists of 3 steps:i) we construct a polynomial projection f of MULT (cf. [7, 11]),ii) using randomized OBDD P for MULT (which is turned to a ran-domized OBDD for f when values of proper variables are �xed) construct arandomized one-way communication protocol for computing the function gde�ned in [19],andiii) �nally we prove the lower bound of the theorem, using the fact| that randomized one-way communication complexity gives the lowerbound for randomized OBDD size [2] and| that g is hard for randomized one-way communication computation[2]. Let � be an ordering of variables of randomized OBDD P . Then thereare two subsets L and W of the set X such that:1) jLj = jW j = l(n) = 
(n) and2) P reads all variables from L before starting reading variables fromW .Now if the remaining variables (variables from (Y [X)n(L[W )) are �xed ina proper way, then randomized OBDD P p-computes the boolean function f(polynomial projection of MULT ) which has the following communicationdescription. Communication matrix CM(f) of size 2l(n) � 2l(n) for f withrows corresponding to variables from L and columns to variables from W isthe lower triangle boolean matrix. That is all the elements above the seconddiagonal are 0 and all elements in the second diagonal and below it | are1 [11]. Formally, function f(L;W ) can be described as follows. View L andW as a binary presentation of numbers. Numbers presented in the reverseorder (�rst bits of L and W represent the lowest bits and last bits | thehighest bit of a number). Then f(L;W ) = 1 i� L+W � 2l(n)+1 [11].We assume in the remaining part of the proof the variables from (Y [X)n(L[W ) been �xed as needed. So P is turned to the randomized OBDD8



that p-computes f . Below, using P we construct a randomized one-waycommunication protocol � for a \pointer" function.The \pointer" function gn ([19]) is de�ned as follows. Let n be an integerand let p[n] be the smallest prime number greater than or equal to n. Then,for every integer s, let !n(s) be de�ned as follows. Let j be the uniqueinteger satisfying j = s mod p[n] and 1 � j � p[n]. Then, !n(s) = j, if1 � j � n, and !n(s) = 1 otherwise.For every n, the boolean function gn : f0; 1gn ! f0; 1g is de�ned asgn(�) = �j , where j = !n(Pni=1 i�i).For the purposes of the proof we use the following \communication"variant of the \pointer" function g in the remaining part of the proof.Let L = fxi1 ; : : : ; xil(n)g. Let for k(n) = log l(n) (w.l.g. we consider thatl(n) is a power of 2) R = fz1; z2; : : : ; zk(n)g is a set of \new" variables, that isR does not contains variables from X [ Y . Then de�ne a \communication"variant of the \pointer" function g as g : L� R! f0; 1g.We use now Yao's standard randomized one-way communication com-putation for g when the �rst player I gets values of the variables from L andthe second player II gets values from the remaining variables R. Player Istarts the computation on his part of inputs, then the player II , on receivinga message from I and his part of the input, outputs the result.Below, in Lemma 2 we construct a randomized one-way communicationprotocol � for q-computing (q 2 (1=2; 1)) g such thatC(�) � a(log bl(n))(log size(P )); (2)where a, b are positive constants. Then we prove (see Lemma 3 below) thatfor this partition of inputs between players, the following lower bound forrandomized one-way communication q-computation is truePCq(g) � c(q)l(n); (3)where c(q) is positive constant. As the inequality (3) is correct for all therandomized one-way communication protocols that q-computes g then from(2) we get the lower bound of the theorem.size(P ) � 2cl(n)= log l(n):Lemma 2 For q 2 (1=2; 1) there is a randomized one-way communicationprotocol � for q-computing function g such thatC(�) � a(log bl(n))(log size(P ));where a, b are positive constants. 9



Proof. We describe a randomized one-way communication protocol �for q-computing the \pointer" function g as follows. Let � = �1; : : : ; �l(n)be an input sequence of player I and ! = !1; : : : ; !k(n) | an input sequenceof player II . Let t(n) = a log(bl(n)). We de�ne constants a; b later in aproper way. Player I runs branching program P on his part of inputs t(n)times and sends t(n) nodes v1; : : : ; vt(n) which were reached by P during thecomputations to the player II . The goal of player II is to determine theinput string � of player I with probability no less than q (more preciselyplayer II determines a string �0 such that probability of the event �0 = �is no less than q). Then, player II having his part of input can outputs thecorrect result with probability no less than q. Let B0 := f0; 1gl(n). In eachstep i � 1, II reduces a set Bi�1 and in the last step l(n) of procedure IIgets a set Bl(n) = f�0g. Player II after getting v1; : : : ; vt(n) determines �0by a randomized binary search procedure as follows.Step 1. Take a \middle" input sequence �1 (sequence �1 determines themiddle column of the communication matrix CM(f). Columns of CM(f)are ordered in a natural order of input strings, that is 0 = (0; : : : ; 0); : : : ; 1 =(1; : : : ; 1)).Run P on �1 t(n) times starting from nodes v1; : : : ; vt(n) and take themajority result �1 2 f0; 1g. Using �1, select a set B1 of potential inputsof player I (the set of sequences that determine the upper half of rows ofCM(f) or the set of sequences that determine the lower half of rows ofCM(f)). jB1j = 2l(n)=2.Step 2. If �1 = 1 then select a \middle" input sequence �2 between �1and 1 else | between 0 and �1.Run P on �2 t(n) times starting from nodes v1; : : : ; vt(n) and take themajority result �2 2 f0; 1g. Using �2, select a set B2 � B1 of potentialinputs of player I . jB2j = jB1j=2.After l(n) steps procedure stops by selecting a set Bl(n) that consists ofunique input sequence �0. Player II outputs the result g(�0; !). Clearly wehave C(�) � t(n) log size(P )):The following counting arguments show that protocol � q-computes g.For a string 
 2 f0; 1gl(n) that determines a column of matrix CM(f)denote by Pr(
) a probability of getting the correct result � by the bi-10



nary search procedure above. Then the probability Pr(�0 = �) of correctlydetermining an input of player I isPr(�0 = �) = Pr(�1) : : :Pr(�l(n)):The probability 1�Pr(
) of getting error � is no more than (1=c(p))t(n)for some constant c(p) > 1 depending on probability p of correct compu-tation of P (see, e.g., [14]). By choosing a constant a in a proper way weget 1� Pr(
) � 1=(bl(n)):>From the above it follows thatPr(�0 = �) � (1� 1=(bl(n)))l(n):Using the fact that function (1� 1=x)x=b is monotonically increasing to(1=e)1=b for x ! 1 we get for properly selected constant b > 1 and for nlarge enough Pr(�0 = �) � q:We formulate now the last lemma.Lemma 3 For arbitrary q 2 (1=2; 1) and arbitrary � > 0 and for every nlarge enough, we havePCq(g) � (l(n)� o(l(n)))(1� (1 + �)H(q)):where H(q) = �q log q � (1� q) log(1� q) is Shannon entropy.See [2] for the proof of the lower bound of the lemma.4 Generalization and concluding remarksNote that in the proof technique used in the section above for ordered read-once branching programs we used the following essential fact. The set ofvariables of P can be partitioned (according to the ordering � of P ) into twoparts L and W (of approximately equal sizes) such that for any computation11



path of P the following is true. If a variable from W is tested, then novariable from L can be tested in the rest of this path. This means thatthe statement of the theorem 3 is true also for other common models ofbranching programs we de�ne below.De�ne a balanced partitioning as any partition of a set X (more preciselythe sequence of sets) into subsets X1 and X2 of jX1j = �(jX2j).De�nition 1 Call branching program P a �-balanced-weak-ordered branch-ing program if it respects a balanced partition � of its variables X into twoparts X1 and X2 such that if an edge leads from an xi-node to an xj-node,where xi 2 Xt and xj 2 Xm, then the condition t � m has to be ful�lled.Call branching program P an balanced-weak-ordered if it is �-balanced-weak-ordered for some partition � of the set of variables of P into two sets.Our theorem 3 can be generalized as follows.Theorem 5 Let for p 2 (1=2; 1) the function MULT (X; Y ) be p-computedby randomized balanced-weak-ordered branching program P . Thensize(P ) � 2
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