
A Lower Bound for Integer Multiplication onRandomized Read-Once Branching ProgramsFarid Ablayev � Marek Karpinskiy
AbstractWe prove an exponential lower bound (2
(n= logn)) on the size ofany randomized ordered read-once branching program computing in-teger multiplication. Our proof depends on proving a new lower boundon Yao's randomized one-way communication complexity of certainboolean functions. It generalizes to some other common models ofrandomized branching programs. In contrast, we prove that testinginteger multiplication, contrary even to nondeterministic situation, canbe computed by randomized ordered read-once branching program inpolynomial size. It is also known that computing the latter problemwith deterministic read-once branching programs is as hard as factor-ing integers.�Dept. of Computer Science University of Bonn. Email: ablayev@cs.uni-bonn.de.Visiting from University of Kazan. Research partially supported by the Volkswagen-Stiftung and Russia Fund for Basic Research 96-01-01962yDept. of Computer Science University of Bonn, and International Computer ScienceInstitute, Berkeley, California. Research partially supported by DFG Grant KA 673/4-1,by the ESPRIT BR Grants 7097, and EC-US 030, and by the Max{Planck Research Prize.Email: marek@cs.uni-bonn.de 1

1 PreliminariesOblivious (or ordered) read-once branching programs become an importanttool in the �eld of digital design and veri�cation (see, for example, [8] and[22]). In these �elds they are also known as \OBDDs" (ordered binary deci-sion diagrams). There are some important practical functions which are hardfor OBDDs. One of such functions is integer multiplication [7]. The otherfunction is testing multiplication for which there is an exponential lowerbound (2
(n1=4)) known for nondeterministic OBDDs [12]. An interestingopen problem remained whether randomization can help in computation ofthese functions by OBDDs. In this paper we show, �rstly, that the methodof [4] yields polynomial size (O(n6 log4 n)) bound for the latter function forrandomized OBDDs. Interestingly, it is known that computing this func-tion with deterministic read-once branching programs is as hard as integerfactoring [22, 15]. Further we prove an exponential lower bound 2
(n= logn)on the size of any randomized OBBD computing integer multiplication.During last decade there were several attempts to �nd generalizationsof OBDDs model for hardware veri�cation, strong enough to compute e�-ciently integer multiplication. But again the results showed that multiplica-tion remained hard for these models ([11, 15]).In [4], a randomized model of branching programs was introduced. Theimportance of this model was highlighted by the fact that there is a functionwhich is hard for deterministic OBDDs but is easy for randomized OBDDs[4]. During the last couple of years new examples of such function werepresented by di�erent authors. For example, clique-only function is hardfor nondeterministic syntactic read-k-times branching programs [5] but issimple for randomized OBDDs [18, 20]. See [21] for another example.It was proved that randomized and nondeterministic models of OBDDare incomparable [2]. So there was still hope (note that multiplication is hardfor nondeterministic OBDD [11]) that randomized OBDDs can compute in-teger multiplication in polynomial size. Our results show that randomizedOBDDs can test integer multiplication in polynomial size but integer mul-tiplication itself requires exponential size.Up to now it was not clear what is harder to multiply or to test themultiplication (see [16] for more information). It is known that DMULT(testing multiplication) is hard for syntactic nondeterministic read-k-timesbranching programs [12]. Note that DMULT function is AC0 equivalentto MULT [9]. Our result answers also to the open problem raised in [22]about succinct representations for functions DMULT and MULT .2

We recall now basic de�nitions ([17]).A deterministic branching program P for computing a boolean functiong : f0; 1gn ! f0; 1g is a directed acyclic multi-graph with a distinguishedsource node s and a distinguished sink node t. The out degree of of eachnon-sink node is exactly 2 and the two outgoing edges are labeled by xi = 0and xi = 1 for variable xi associated with the node. Call such node an xi-node. The label \xi = �" indicates that only inputs satisfying xi = � mayfollow this edge in the computation. The branching program P computesa function g in the obvious way: for each � 2 f0; 1gn we let f(�) = 1 i�there is a directed s � t path starting in the source s and leading to to the(accepting) node t such that all labels xi = �i along this path are consistentwith � = �1; �2; : : : ; �n.We de�ne a randomized branching program [4] as a program having inaddition specially designated random (\coin-toss") inputs. When values ofthese random inputs are chosen from the uniform distribution, the outputof the branching program is a random variable.We say that a randomized branching program (a; b)-computes a booleanfunction f if it outputs 1 with probability at most a for input � such thatf(�) = 0 and outputs 1 with probability at least b for inputs � such thatf(�) = 1. For 1 � p > 1=2 we write shortly \p-computes" instead of\(1�p; p)-computes". A randomized braching program computes a functiong with on-sided error if it (�; 1)-computes g.We de�ne the size of (P), size(P), (complexity of the branching programP) as the number of its internal nodes.Read-once branching program is a branching program in which everyvariable is tested at most once in every path. A � -ordered read-once branch-ing program is a read-once branching program which respects an ordering� of the variables, i.e. if an edge leads from an xi-node to an xj-node, thecondition �(i) < �(j) has to be ful�lled. An OBDD (alternatively orderedread-once branching program) is a � -ordered read-once branching programrespecting some ordering � of variables.2 ResultsWe start with de�ning a boolean decision function: the testing integer multi-plication function (or alternatively, decision problem of recognizing the graphof multiplication) DMULT as follows. DMULT : f0; 1g3n ! f0; 1g andDMULT (X; Y; Z) = 1 i� XY = Z. Here X; Y , and Z are binary represen-3

tations of integer numbers, jX j = jY j = n, jZj = 2n.Theorem 1 Function DMULT can be computed by a randomized OBDDwith one-sided "(n)-error of sizeO n6"5(n) log4 n"(n)! :Proof. Uniformly at random select a prime number p from the setQd(n) = fp1; : : : ; pd(n)g, d(n) = O(n), of �rst d(n) primes. Then deter-ministically count a = X mod p, b = Y mod p, multiply ab, then countc = Z mod p, and verify whether ab = c. If ab = c then accept an in-put else reject. Chinese reminder theorem provides the correctness of suchcomputation and �ngerprinting arguments of [4] provide a correct result oftesting XY = Z mod p by randomized OBDDs with high probability. Allthese manipulations can be done by a polynomial size randomized OBDDP constructed below.Phase 1. (randomized). Choose d(n) to be some function in O(n), s.t.d(n) > 4n. P randomly selects a prime number p from the set Qd(n) =fp1; p2; : : : ; pd(n)g of �rst d(n) prime numbers.P uses t = dlog d(n)e random bits for selecting a prime number p. Preads random bits in the order �1; : : : ; �t. � = �1 : : : �t is interpreted asbinary notation of a number N(�). P selects i-th prime number pi 2 Qd(n)i� N(�) = i mod d(n).Phase 2. (deterministic). During a computation path P counts a =X mod p, by reading consequently bits from X . P stores a by internal node(state). Then, P counts b = Y mod p and stores the product ab. At last Pcounts c = Z mod p and verify whether ab = c. If ab = c then it accepts elseit rejects.So, if XY = Z, then P with probability 1 outputs the correct answer. IfXY 6= Z, then it can happen that XY = Z (mod p) for some p 2 Qd(n).In these cases P makes an error.For XY 6= Z we have jXY � Zj � 22n < p1 � � �p2n where p1; : : : ; p2n arethe �rst 2n prime numbers. This means that in the case when XY 6= Z, theprobability "(n) of the error of P on the input X; Y; Z is less than equal to4n=d(n) (less than equal to 2n=d(n) if t is a power of 2).For p 2 Qd(n) denote by Sp a deterministic subprogram of P that carriesout the deterministic part of computations of the phase 2 with the prime p.4

The size of P is bounded by2t+1 � 1 + Xp2Qd(n) size(Sp):Sp has the length 3n. For the realization of the procedure describedin the phase 2 it is su�cient to store in the internal nodes four numbers:X mod p; Y mod p;XY mod p and Z mod p. The i-th prime is of orderO(i log i). Therefore we havesize(Sp) = O(np4) = O(n(d(n) logd(n))4):>From the above upper bounds for the size(Sp), size(P) and from theupper bound for "(n) ("(n) < 4n=d(n)), the upper bound of the theoremfollows.We de�ne now integer multiplication function MULT as follows. Thefunction MULTk : f0; 1g2n ! f0; 1g computes the k-th bit, 0 � k � 2n� 1in the product of two n-bit integers. That is MULTk(X; Y) = zk whereX = xn�1 : : : x0, Y = yn�1 : : :y0, and Z = z2n�1 : : : z0. Now denote byMULT function MULTn�1 which computes the middle bit in the productxy. It is known that the middle bit is the \hardest" bit (see, for example[15]).For p 2 (1=2; 1), k 2 f0; : : : ; 2n� 1g, and a permutation � of f1; : : : ; 2nglet Pp(k; �) be a randomized OBDD with the ordering � that p-computesMULTk.Theorem 2 Given p 2 (1=2; 1). For every � there exists a k such thatsize(Pp(k; �)) � 2n(1�H(p))=8;where H(p) = �p log p� (1� p) log(1� p) is Shannon entropy.Theorem 3 Let for p 2 (1=2; 1) the function MULT (X; Y) is p-computedby a randomized OBDD P . Thensize(P) � 2
(n= logn):These two theorems state that multiplication is hard for randomizedOBDD. The �rst one is \theoretically weaker" than the second. But the5

proof of the �rst one is shorter and more direct. It is based on provinglower bound for the polynomial projection function of MULTk ([6]). Theproof of the theorem 3 itself is based on proving lower bound for anotherpolynomial projection of MULT [7, 11] using randomized binary searchcommunication game. See [14, 13] for more information. Proofs of thetheorems are presented in the next section.3 Proofs3.1 Proof of the theorem 2Our proof proceeds as follows:i) we construct a polynomial projection fk;� of MULTk and thenii) we prove that fk;� is hard for a randomized � -ordered OBDD.For an arbitrary ordering � in a randomized OBDD, there are two subsetsL and W of equal sizes l � n=2 such that:1) P reads all variables from L before starting reading variables from Wand2) L � X and W � Y or L � Y and W � X .W.l.g. assume in the rest of the proof that L � X and W � Y . So,L = fxi1 ; : : : ; xilg and W = fyj1 ; : : : ; yjlg.>From now on we are interested only in inputs � 2 f0; 1g2n such that:for variables Y all bits of � except for a one bit of W are 0. Call such Wcontrol set. Variables from L can take arbitrary values from f0; 1g. Forconvenience �x the remaining variables from XnL to be 0. Call such L dataset.Denote by [k] a set of pair of bits of data and control sets that aretransmitted to the k-th bit of the product XY . Formally[k] = f(xi; yj) 2 L�W : i+ j = kg:As jL�W j = l2 � n2=4, there exists a k such thatj[k]j = t � l2=(2n) = n=8: (1)Now �x this set [k]. Denote by Lk � L (Wk � W) a subset of L (W)that consists of all variables xi (yj) that \take part" in the set [k].Consider a projection fk;� : Lk �Wk ! f0; 1g of MULTk, for which allvariables from (Y [X)n(Lk[Wk)) are �xed and equal 0. The communicationmatrix CM of fk;� for a partition (Lk;Wk) of inputs has the following6

property:1) it is 2t � t boolean matrix and2) all rows of CM are di�erent.We use now Yao's standard randomized one-way communication com-putation [23, 24] (see also [13]) for boolean functions.The following lemma is proved in [2]. It states the connection betweenthe size of OBDDs and the one-way communication complexity. Consider aboolean function h : f0; 1gm ! f0; 1g. Let U = V �R be partition of a set ofvariables of h into two parts. For p > 1=2 denote by PCUp (h) a randomizedone-way communication p-computation for h (a computation which outputsthe correct result with the probability greater or equal to p) according tothe partition U of inputs.Lemma 1 Let " 2 [0; 1=2], p = 1=2 + ". Let a randomized OBDD P p-computes the function h. Let U = V � R be a partition of inputs betweenplayers with V and R de�ned according to ordering � of inputs of P . Thatis P can read variables from R only after reading variables from L and doesnot read variables from L after starting reading variables from R. Thensize(P) � 2PCUp (h)�1:Now use the theorem proved in [1] which states that the randomizedone-way communication complexity cannot be too \small" for a functionwith a \large" data set and a \small" control set.Choose a set Z � R such that for an arbitrary two words u; u0 2 V thereexists a word y 2 Z such that h(u; y) 6= h(u0; y). The set Z is called thecontrol set for the matrix CM .Denote by ts(CM) the minimum size of a control set for matrix CM andnrow(CM) the number of di�erent rows of matrix CM .For a number p 2 [1=2; 1], de�ne (probabilistic communication charac-teristic (cf. [1])) pccUp (h) = ts(CM)lognrow(CM)H(p), where H(p) = �p log p� (1�p) log(1� p) is the Shannon entropy [10].Theorem 4 ([1]) Let " 2 [0; 1=2] and p = 1=2+". Let U � f0; 1gn be suchthat U = V � R, where V and R are de�ned in according to partition � ofinputs of function h : f0; 1gn ! f0; 1g. ThenPCUp (h) � DCU(h)(1� pccUp (h))� 1;where DCU (h) is the deterministic one-way communication complexity ofh. 7

In our case we have that 1) for U = Lk �Wk pccUp (fk;�) = H(p) and 2)DCU(fk;�) = log t (because all rows of the communication matrix CM aredi�erent). From the above we get thatsize(P) � 2t(1�H(p)):Using (1) and the inequality above we get the lower bound of the theo-rem.3.2 Proof of the theorem 3The proof consists of 3 steps:i) we construct a polynomial projection f of MULT (cf. [7, 11]),ii) using randomized OBDD P for MULT (which is turned to a ran-domized OBDD for f when values of proper variables are �xed) construct arandomized one-way communication protocol for computing the function gde�ned in [19],andiii) �nally we prove the lower bound of the theorem, using the fact| that randomized one-way communication complexity gives the lowerbound for randomized OBDD size [2] and| that g is hard for randomized one-way communication computation[2]. Let � be an ordering of variables of randomized OBDD P . Then thereare two subsets L and W of the set X such that:1) jLj = jW j = l(n) =
(n) and2) P reads all variables from L before starting reading variables fromW .Now if the remaining variables (variables from (Y [X)n(L[W)) are �xed ina proper way, then randomized OBDD P p-computes the boolean function f(polynomial projection of MULT) which has the following communicationdescription. Communication matrix CM(f) of size 2l(n) � 2l(n) for f withrows corresponding to variables from L and columns to variables from W isthe lower triangle boolean matrix. That is all the elements above the seconddiagonal are 0 and all elements in the second diagonal and below it | are1 [11]. Formally, function f(L;W) can be described as follows. View L andW as a binary presentation of numbers. Numbers presented in the reverseorder (�rst bits of L and W represent the lowest bits and last bits | thehighest bit of a number). Then f(L;W) = 1 i� L+W � 2l(n)+1 [11].We assume in the remaining part of the proof the variables from (Y [X)n(L[W) been �xed as needed. So P is turned to the randomized OBDD8

that p-computes f . Below, using P we construct a randomized one-waycommunication protocol � for a \pointer" function.The \pointer" function gn ([19]) is de�ned as follows. Let n be an integerand let p[n] be the smallest prime number greater than or equal to n. Then,for every integer s, let !n(s) be de�ned as follows. Let j be the uniqueinteger satisfying j = s mod p[n] and 1 � j � p[n]. Then, !n(s) = j, if1 � j � n, and !n(s) = 1 otherwise.For every n, the boolean function gn : f0; 1gn ! f0; 1g is de�ned asgn(�) = �j , where j = !n(Pni=1 i�i).For the purposes of the proof we use the following \communication"variant of the \pointer" function g in the remaining part of the proof.Let L = fxi1 ; : : : ; xil(n)g. Let for k(n) = log l(n) (w.l.g. we consider thatl(n) is a power of 2) R = fz1; z2; : : : ; zk(n)g is a set of \new" variables, that isR does not contains variables from X [Y . Then de�ne a \communication"variant of the \pointer" function g as g : L� R! f0; 1g.We use now Yao's standard randomized one-way communication com-putation for g when the �rst player I gets values of the variables from L andthe second player II gets values from the remaining variables R. Player Istarts the computation on his part of inputs, then the player II , on receivinga message from I and his part of the input, outputs the result.Below, in Lemma 2 we construct a randomized one-way communicationprotocol � for q-computing (q 2 (1=2; 1)) g such thatC(�) � a(log bl(n))(log size(P)); (2)where a, b are positive constants. Then we prove (see Lemma 3 below) thatfor this partition of inputs between players, the following lower bound forrandomized one-way communication q-computation is truePCq(g) � c(q)l(n); (3)where c(q) is positive constant. As the inequality (3) is correct for all therandomized one-way communication protocols that q-computes g then from(2) we get the lower bound of the theorem.size(P) � 2cl(n)= log l(n):Lemma 2 For q 2 (1=2; 1) there is a randomized one-way communicationprotocol � for q-computing function g such thatC(�) � a(log bl(n))(log size(P));where a, b are positive constants. 9

Proof. We describe a randomized one-way communication protocol �for q-computing the \pointer" function g as follows. Let � = �1; : : : ; �l(n)be an input sequence of player I and ! = !1; : : : ; !k(n) | an input sequenceof player II . Let t(n) = a log(bl(n)). We de�ne constants a; b later in aproper way. Player I runs branching program P on his part of inputs t(n)times and sends t(n) nodes v1; : : : ; vt(n) which were reached by P during thecomputations to the player II . The goal of player II is to determine theinput string � of player I with probability no less than q (more preciselyplayer II determines a string �0 such that probability of the event �0 = �is no less than q). Then, player II having his part of input can outputs thecorrect result with probability no less than q. Let B0 := f0; 1gl(n). In eachstep i � 1, II reduces a set Bi�1 and in the last step l(n) of procedure IIgets a set Bl(n) = f�0g. Player II after getting v1; : : : ; vt(n) determines �0by a randomized binary search procedure as follows.Step 1. Take a \middle" input sequence �1 (sequence �1 determines themiddle column of the communication matrix CM(f). Columns of CM(f)are ordered in a natural order of input strings, that is 0 = (0; : : : ; 0); : : : ; 1 =(1; : : : ; 1)).Run P on �1 t(n) times starting from nodes v1; : : : ; vt(n) and take themajority result �1 2 f0; 1g. Using �1, select a set B1 of potential inputsof player I (the set of sequences that determine the upper half of rows ofCM(f) or the set of sequences that determine the lower half of rows ofCM(f)). jB1j = 2l(n)=2.Step 2. If �1 = 1 then select a \middle" input sequence �2 between �1and 1 else | between 0 and �1.Run P on �2 t(n) times starting from nodes v1; : : : ; vt(n) and take themajority result �2 2 f0; 1g. Using �2, select a set B2 � B1 of potentialinputs of player I . jB2j = jB1j=2.After l(n) steps procedure stops by selecting a set Bl(n) that consists ofunique input sequence �0. Player II outputs the result g(�0; !). Clearly wehave C(�) � t(n) log size(P)):The following counting arguments show that protocol � q-computes g.For a string
 2 f0; 1gl(n) that determines a column of matrix CM(f)denote by Pr(
) a probability of getting the correct result � by the bi-10

nary search procedure above. Then the probability Pr(�0 = �) of correctlydetermining an input of player I isPr(�0 = �) = Pr(�1) : : :Pr(�l(n)):The probability 1�Pr(
) of getting error � is no more than (1=c(p))t(n)for some constant c(p) > 1 depending on probability p of correct compu-tation of P (see, e.g., [14]). By choosing a constant a in a proper way weget 1� Pr(
) � 1=(bl(n)):>From the above it follows thatPr(�0 = �) � (1� 1=(bl(n)))l(n):Using the fact that function (1� 1=x)x=b is monotonically increasing to(1=e)1=b for x ! 1 we get for properly selected constant b > 1 and for nlarge enough Pr(�0 = �) � q:We formulate now the last lemma.Lemma 3 For arbitrary q 2 (1=2; 1) and arbitrary � > 0 and for every nlarge enough, we havePCq(g) � (l(n)� o(l(n)))(1� (1 + �)H(q)):where H(q) = �q log q � (1� q) log(1� q) is Shannon entropy.See [2] for the proof of the lower bound of the lemma.4 Generalization and concluding remarksNote that in the proof technique used in the section above for ordered read-once branching programs we used the following essential fact. The set ofvariables of P can be partitioned (according to the ordering � of P) into twoparts L and W (of approximately equal sizes) such that for any computation11

path of P the following is true. If a variable from W is tested, then novariable from L can be tested in the rest of this path. This means thatthe statement of the theorem 3 is true also for other common models ofbranching programs we de�ne below.De�ne a balanced partitioning as any partition of a set X (more preciselythe sequence of sets) into subsets X1 and X2 of jX1j = �(jX2j).De�nition 1 Call branching program P a �-balanced-weak-ordered branch-ing program if it respects a balanced partition � of its variables X into twoparts X1 and X2 such that if an edge leads from an xi-node to an xj-node,where xi 2 Xt and xj 2 Xm, then the condition t � m has to be ful�lled.Call branching program P an balanced-weak-ordered if it is �-balanced-weak-ordered for some partition � of the set of variables of P into two sets.Our theorem 3 can be generalized as follows.Theorem 5 Let for p 2 (1=2; 1) the function MULT (X; Y) be p-computedby randomized balanced-weak-ordered branching program P . Thensize(P) � 2
(n= logn):Open problemsIt is an interesting open problem to prove a lower bound for integer mul-tiplication on randomized branching programs with 1) limited number ofinputs readings, and 2) without any condition on ordering of variables. Weconjecture that the corresponding lower bounds are also exponential.AcknowledgmentWe would like to thank Anna G�al, Stephen Ponzio,Sasha Razborov, Thomas Thierauf and Andy Yao for helpful discussion onthe subject of the paper.References[1] F. Ablayev, Lower bounds for one-way probabilistic communicationcomplexity in Proceedings of the ICALP'93, Lecture Notes in ComputerScience, Springer-Verlag, 700, (1993), 241-252.12

[2] F. Ablayev, Randomization and nondeterminism are incomparable forordered read-once branching programs, in Proceedings of the ICALP'97,Lecture Notes in Computer Science, Springer-Verlag, 1256, (1997), 195-202.[3] F. Ablayev and M. Karpinski, On the power of randomized branchingprograms, in Proceedings of the ICALP'96, Lecture Notes in ComputerScience, Springer-Verlag, 1099, (1996), 348-356.[4] F. Ablayev and M. Karpinski, On the power of randomized orderedbranching programs, Research Report 85181-CS, University of Bonn,1997.[5] A. Borodin, A. Razborov, and R. Smolensky, On lower bounds for read-k-times branching programs, Computational Complexity, 3, (1993), 1-18[6] R. Bryant, Graph-based algorithms for boolean function manipulationIEEE Trans. Comput., C-35, (8), (1986), 677-691.[7] R. Bryant, On the complexity of VLSI implementations and graph rep-resentations of boolean functions with applications to integer multipli-cation, IEEE Trans. Comput., 40 (2), (1991), 205-213.[8] R. Bryant, Symbolic boolean manipulation with ordered binary decisiondiagrams, ACM Computing Surveys, 24, No. 3, (1992), 293-318.[9] R. Buss, The graph of multiplication is equivalent to counting, Infor-mation Processing Letters, 41, (1992), 199-201.[10] R. Gallager, Information theory and reliable communication, Wiley,New York, 1968.[11] J. Gergov, Time-space tradeo�s for integer multiplication on varioustypes of input oblivious sequential machines, Information ProcessingLetters, 51, (1994), 265-269.[12] S. Jukna, The graph of integer multiplication is hard for read-k-timesnetworks, TR 95-10 Mathematik/Informatik University of Trier, 1995.[13] E. Kushilevitz and N. Nisan, Communication complexity, CambridgeUniversity Press, 1997.[14] R. Motwani and P. Raghavan, Randomized Algorithms, CambridgeUniversity Press, 1995. 13

[15] S. Ponzio, A lower bound for integer multiplication with read-oncebranching programs, Proceedings of the 27-th STOC, (1995), 130-139.[16] S. Ponzio, Restricted branching programs and hardware veri�cation,Technical Report, MIT/LCS-TR-633, MIT, 1995[17] A. Razborov, Lower bounds for deterministic and nondeterministicbranching programs, in Proceedings of the FCT'91, Lecture Notes inComputer Science, Springer-Verlag, 529, (1991), 47{60.[18] T. Thierauf, personal communication, 1997.[19] P. Savicky, S. Zak, A large lower bound for 1-branching programs, Elec-tronic Colloquium on Computational Complexity, Revision 01 of TR96-036, (1996), available at http:==www.eccc.uni-trier.de=eccc=[20] M. Sauerho�, personal communication, 1997.[21] M. Sauerho�, On nondeterminismversus randomness for read-once branching programs Electronic Col-loquium on Computational Complexity, TR97-030, (1997), available athttp:==www.eccc.uni-trier.de=eccc=[22] I. Wegener, E�cient data structure for Boolean functions, DiscreteMathematics, 136, (1994), 347-372.[23] A.C. Yao, Some Complexity Questions Related to Distributive Com-puting, in Proc. of the 11th Annual ACM Symposium on the Theory ofComputing, (1979), 209-213.[24] A.C. Yao, Lower bounds by probabilistic arguments, in Proc. of the27th Annual IEEE Symposium on Foundations of Computer Science(1983), 420-428.
14

