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1 IntroductionThe max-bisection problem, i.e., the problem of �nding a halving of the vertex set of a graphthat maximizes the number of edges across the partition, is one of the basic combinatorialoptimization problem.Frieze and Jerrum give the following example of its application [6]: there are m people, eachof whom selects two activities among n ones. Assuming n to be even, split the activitiesevenly between two time slots in order to maximize the number of people who participatein both their activities.The best known approximation algorithms for max-bisection yield a solution whose size is atleast 0:701 times the optimumHalperin and Zwick [9]. It is still an open problem whether themax-bisection problem is hard to approximate (or even to compute exactly) on the planargraphs.For dense graphs, Arora, Karger and Karpinski give polynomial time approximation schemesfor max- and min-bisection in [1]. Recently, Feige, Karpinski and Langberg [4] have obtainedsharp lower bounds on the ratio between the sizes of max bisection and max cut for regulargraphs. They have also shown the bounds to be tight already for constant degree regulargraphs [4]. By combining them with the known polynomial time approximation algorithmsfor max cut they have obtained an approximation ratio of 0:795 for max bisection (i.e., apolynomial time algorithm for max bisection of regular graphs producing a solution of sizeat least 0:795 times the optimum).In this paper, for low degrees k, 3 � k � 8; we derive sharper lower bounds on the ratiobetween the sizes of max bisection and max cut for k-regular graphs than those proven in[4] for constant degree regular graphs. In e�ect, we can derive improved approximationratios for max bisection for k-regular graphs where 3 � k � 8: In particular, we obtain thefollowing approximation ratios: 0:847 for k = 3; 0:812 for k = 5; 0:803 for k = 7; and 0:805for k = 4; 6; 8:The max bisection problem can be seen as the max cut problem with an additional require-ment on the equal size of the two subsets in the two partition. Because of this requirementthe approximability status of max bisection is more evolved than that of max cut. Thissituation extends also to special graph classes, e.g., planar graphs. Planar max cut is knownto admit an exact polynomial time algorithm [8] whereas the complexity and approxima-bility status of planar max bisection is totally open. This contrasts with the case of manyplanar graph problems which are known to admit polynomial time approximation schemesby falling into Khanna-Motwani's syntactic framework [10].Our second main result is the �rst polynomial time approximation scheme (PTAS) for themax bisection problem restricted to planar graphs of the sublinear maximum degree. It isobtained by e�cient transformation from the max cut produced by an exact polynomial timealgorithm of [8] into a bisection with a close size.2



2 PreliminariesWe start here with some basic notions used throughout the paper.De�nition 2.1 A real number � is said to be an approximation ratio for a maximizationproblem, or equivalently the problem is said to be approximable within a ratio �, if there isa polynomial time algorithm for the problem which always produces a solution of size at least� times the optimum. If a problem is approximable for arbitrary � < 1 then it is said toadmit a polynomial time approximation scheme a (PTAS for short).We formulate now the underlying optimization problems of max cut and max bisection.De�nition 2.2 A partition of a set of vertices of an undirected graph G into two sets X; Yis called a cut of G and is denoted by (X;Y ): A partition is a bisection if the cardinalitiesof X and Y are equal. The edges of G with one endpoint in X and the other in Y are saidto be cut by a partition. A partition is called a max cut of G if it maximizes the number ofcut edges. The partition is called a max bisection of G if it is a bisection of G maximizingthe number of cut edges. The max-cut problem is to �nd a max cut of a graph. Analogously,the max-bisection problem is to �nd a max bisection of a graph.The following simple lemmas will be used in the next section.Lemma 2.1 Let (X;Y ) be a max cut of a graph G: For any vertex v in Y; v has at least asmany neighbors in X as in Y:Proof: Suppose otherwise. Then, the partition (X [ fvg; Y n fvg) would cut more edgesthan (X;Y ): 2De�nition 2.3 A max cut (X;Y ) of a graph G is said to be maximally balanced if it cannotbe transformed into another max cut (X 0; Y 0) of G satisfying jjX 0j � jY 0jj < jjXj � jY jj bymoving a single vertex from X to Y or vice versa.The next lemma exhibits a useful property of a maximally balanced max cut.Lemma 2.2 Let (X;Y ) be a maximally balanced max cut of a graph G where jXj < jY j:For any vertex v in Y; v has more neighbors in X than in Y:Proof: If v had at most as many neighbors in X as in Y then by moving it to X we wouldobtain another max cut (X 0; Y 0) satisfying jjX 0j � jY 0jj < jjXj � jY jj; a contradiction. 23



A max cut can be easily transformed into a maximally balanced max cut by the followinglemma.Lemma 2.3 A max cut of a graph can be transformed into a maximally balanced max cutof the graph in linear time.Proof: We may assume w.l.o.g that the input max cut (X;Y ) is not maximally balancedand jXj < jY j: For each vertex v in Y as long as the size of the current Y is not equal tothat of the current X we check whether or not it is possible to move v to the current Xwithout decreasing the number of cut edges. If so, we move v to the current X:The resulting max cut is maximally balanced since either the size of the �nal Y is equal tothat of the �nal X or none of the vertices in the �nal Y can be moved to the �nal X withoutdecreasing the number of cut edges. The latter follows from the observation that for eachvertex v in the �nal Y the number of its neighbors in the �nal Y cannot exceed that in theoriginal Y: So, if v could not change the side before, it cannot do it now.Checking the vertices in Y takes linear time. 23 Approximation of the max-bisection problem for lowdegree regular graphsIn this section we derive new lower bounds on the ratio between the size of max bisection andthat of max cut for low degree regular graphs following the approach of [5]. By combiningthem with known polynomial time approximation algorithms for max cut on regular graphswe improve the known approximation ratios for low degree regular graphs substantially.The following lemma is immediate.Lemma 3.1 For a positive integer k; let (X;Y ) be a max cut of a k-regular graph G; andlet E be the set of edges of G cut by (X;Y ): Next, for i = 0; :::; b(k � 1)=2c; let Yi bethe set of vertices in Y with exactly i neighbors in Y: The inequalities jXj � jEj=k andPb(k�1)=2ci=0 (k � i)jYij � jEj hold.Theorem 3.1 For k = 3; 4; 6; 8 any max cut (X;Y ) of a k-regular graph G can be trans-formed in linear time into a bisection of G cutting no less than 1112 of the number of edges cutby (X;Y ). For k = 5; 7 any max cut (X;Y ) of a k-regular graph G can be transformed inlinear time into a bisection of G cutting no less than 3740 and 6470, respectively, of the numberof edges cut by (X;Y ). 4



Proof: Assume the notation of Lemma 3.1, and w.l.o.g. jXj < jY j: Also, we may assumew.l.o.g that for even k the max cut is maximally balanced since otherwise we can transformit to such a max cut in linear time by Lemma 2.3. Let l be the number of vertices in Ynecessary to move to X in order to transform (X;Y ) into a bisection of G:By Lemmata 2.1, 2.2, 3.1, l � 12(Pb(k�1)=2ci=0 jYij � jEj=k). Consequently, we have l �12k (kPb(k�1)=2ci=0 jYij � jEj) which by Lemma 3.1 yields l � 12k (Pb(k�1)=2ci=1 ijYij):Suppose we can pick an independent set I of vertices in Y composed of disjoint subsets Ii; i =1; :::; bk=2c; respectively containing at least ijYij2k vertices in Sb(k�1)=2cm=i Ym (*). Then, by movingl vertices from I to X we obtain a bisection cutting at least jEj� 12k Pb(k�1)=2ci=1 ((k�i)�i)ijYijedges. The latter sum is jY1j for k = 3; 2jY1j for k = 4; 3jY1j+ 2jY2j for k = 5; 4jY1j+ 4jY2jfor k = 6; 5jY1j+ 6jY2j+ 3jY3j for k = 7; and 6jY1j+ 8jY2j+ 6jY3j for k = 8: By Lemma 3.1,it can be bounded from above by jEj2 for k = 3; 2jEj3 for k = 4; 34jEj for k = 5; jEj for k = 6;65 jEj for k = 7; and 43 jEj for k = 8: Thus, for k = 3; 4; 5; 6; 7; 8 the resulting bisection cutsat least 1112jEj; 1112 jEj, 3740jEj; 1112jEj; 6470jEj and 1112jEj edges, respectively.To pick such an independent set I; we may w.l.o.g. restrict ourselves to the subgraph G0 ofG induced by Y:For k = 3; 4 we have I = I1 and the condition (*) requires at most jI1j � 16 jY1j. We cantrivially pick an independent subset of Y1 whose size is at least 12jY1j by avoiding pickingboth endpoints of any isolated edge in G0:For k = 5; 6; it is su�cient if I1 contains at least 110jY1j vertices in Y1[Y2 whereas I2 containsat least 15jY2j vertices in Y2; by (*). Observe that G0 consists of isolated vertices, paths, andpossibly cycles. We can easily form the independent set I1 consisting of 110 of the verticesin Y1 by accounting to it the isolated vertices in G0; further if this is not enough, singleendpoints of isolated edges in G0; and if this is still not enough, single endpoints of pathsof length greater than one in G0: Let P be the set of the latter paths in G0: Note that I1eliminates at most jP j=10 of neighbors of degree two in G0, and all vertices in Y2 are innervertices on paths in P: Therefore, since 12(jY2j � jP j=10) � 15 jY2j by jP j � jY2j; we can easilyform the required independent set I2 by taking at least every second vertex not adjacent toI1 on the paths in P:For k = 7; 8 the following three conditions are jointly not weaker than (*).1. I1 should have at least jY1j14 vertices in Y3 [ Y2 [ Y1:2. I2 should contain at least 2jY2j14 vertices in Y3 [ Y2; and3. I3 should contain at least 3jY3j14 vertices in Y3.While there is a vertex v of degree three in G0; we iterate the following step: augment I byv and delete v and its neighbors. 5



Let I 03 be the resulting independent set of vertices of degree three in the original G0: Next,let s be the number of vertices of degree one or two in the original G0 that have at least oneneighbor in I 03: The inequality jY3�I 03j+s � 3jI 03j immediately follows from the way of pickingI 03: This yields jY3j+ s � jI 03j+ jY3 � I 03j+ s � 4jI 03j: Hence, the surplus of vertices of degreethree in I 03 with respect to the requirement (3) on I3 is at least jI 03j� 3jY3j14 � jI 03j� 314(4k1� s)� 214k1 + 314s > s7 : It yields a su�cient number of vertices in I to ful�ll the requirements (1)and (2) proportionally for the aforementioned s vertices of degree one and two. We can pickup the appropriate proportions of independent vertices required in (1) and (2) among theremaining vertices of degree one and two in the original graph G0 analogously as in the casek = 5; 6: 2Corollary 3.1 Let � = 0:878 be the approximation ratio achievable for the max-cut problem[7], and let � = 0:924 be the approximation ratio achievable for the max-cut problem for three-regular graphs [4]. The max-bisection problem is approximable within a ratio of 11�12 = 0:847for three-regular graphs, within a ratio of 37�40 = 0:812 for �ve-regular graphs , within a ratioof 64�70 = 0:803 for seven-regular graphs, and within a ratio of 11�12 = 0:805 for four, six andeight-regular graphs.4 PTAS for max bisection on planar graphsThe requirements of the equal size of the vertex subsets in a two partition yielding a maxbisection makes the max-bisection problem hardly expressible as a maximum planar satis�-ability formula. For this reason we cannot directly apply Khanna-Motwani's [10] syntacticframework yielding PTAS for the planar restrictions of several basic graph problems includ-ing max cut. Instead, we choose to produce a max cut of the input graph by running theexact polynomial time algorithm of Hadlock [8] and then to transform it into a bisection ofa close size. Our transformation is based on the following known fact on edge separabilityof planar graphs.Fact 1[2]. Let G be an n-vertex planar graph of maximum degree d: G has an edge separatorof size O(p2dn); i.e., a set of edges whose removal disconnects G into two subgraphs noneof which has more than two thirds of the vertices of G: Furthermore, such an edge set can befound in time O(n):Analogously as Theorem 3 in [11] is obtained from the original Lipton-Tarjan vertex planarseparator theorem, we obtain the following useful theorem from Fact 1.Theorem 4.1 Let G be an n-vertex planar graph of maximum degree d with nonnegativevertex costs summing to no more than one and let 0 < � � 1: Then there is some set C ofO(qdn=�) edges whose removal leaves G with no connected component of cost exceeding �:Furthermore the set C can be found in time O(n log n):6



We prove that the following algorithm yields a PTAS for planar graphs of a sublinear degree.Algorithm Bisectioninput: a planar graph G on n verticesoutput: a bisection of G1. Find a maximum cut of G: Let Vl; Vr be the two subsets of V inducing the cut.2. Apply Theorem 4.1 with � = k(n)=n to �nd a set C of edges of size O(nqd=k(n))whose removal leaves no connected component with more than k(n) vertices.3. Set V1; V2 to empty sets.for each connected component Ci of G resulting from removing C from G doif jV1j > jV2j and jCi \ Vlj < jCi \ Vrj or jV1j � jV2j and jCi \ Vlj � jCi \ Vrj thenaugment V1 by Ci \ Vl and V2 by Ci \ Vr else augment V1 by Ci \ Vr and V2 by Ci \ Vl4. if jV1j > jV2j then sort V1 by vertex degree in non-decreasing order and augment V2 bythe �rst (jV1j � jV2j)=2 vertices in V1 else sort V2 by vertex degree in non-decreasingorder and augment V2 by the �rst (jV2j � jV1j)=2 vertices in V25. Output (V1; V2):By the fourth step we obtain:Lemma 4.1 Algorithm Bisection produces a bisection of G:Lemma 4.2 The size of the cut produced by Algorithm Bisection is at least the size ofmaximum cut of G decreased by O(nqd=k(n) + k(n)):Proof: Since each component Ci has size not exceeding k(n); the di�erence between thesizes of V1 and V2 never exceeds k(n) by induction on the number of iterations of the blockin Step 3. The cut produced by Algorithm Bisection includes in particular all the edgesbelonging to the maximum cut produced in Step 1 that are outside C and are not incidentto the at most k(n)=2 vertices moved from V1 to V2 or vice versa in Step 4. By planarity ofG implying the O(1) average vertex degree and the choice of the at most k(n)=2 vertices,there are only O(k(n)) edges incident to them. 27



Lemma 4.3 Algorithm Bisection can be implemented in polynomial time.Proof: Step 1 can be implemented in polynomial time by [8]. Step 2 takes O(n log n) timeby [2]. Steps 3, 4 can be easily implemented in timeO(n log n) by using basic data structures.2Theorem 4.2 The max-bisection problem for connected planar graphs of degree o(n) admitsa PTAS.Proof: Let G be a connected planar graph of maximum degree d: Set k(n) in AlgorithmBisection to �d where � is a rational to be speci�ed later. By Lemma 4.2, AlgorithmBisection produces in polynomial time a bisection of G whose size is at most that of maxcut of G decreased by ��1=2n+ o(�n): It is su�cient to observe that max cut of G has size
(n) and choose a su�ciently large �: 25 Final remarkNote that for an instance of a star graphs, the ratio between the size of max bisection andthat of max cut can be arbitrarily close to 12 : For that reason, our approach of transforminga max cut of a planar graph into its bisection of close size cannot directly work for a graphhas a linear maximum degree. An interesting open problem remains to extend our result toarbitrary planar graphs.References[1] S. Arora, D. Karger and M. Karpinski. Polynomial Time Approximation Schemes forDense Instances of NP-hard Problems, Proceedings 27th ACM STOC, pp. 284-293,1995.[2] K. Diks, H.N. Djidjev, O. Sykora and I. Vrto. Edge Separators of Planar and OuterplanarGraphs with Applications. Journal of Algorithms 14, pp. 258-279 (1993).[3] A.A. Ageev and M.I. Sviridenko. Approximation algorithms for Maximum Coverageand Max Cut with cardinality constraints. Proceedings of IPCO99, Lecture Notes inComputer Science 1610, pp. 17-30, 1999.[4] U. Feige, M. Karpinski and M. Langberg. Improved Approximation of Max-Cut onGraphs of Bounded Degree. ECCC (http://www.eccc.uni-trier.de/eccc/), TR00-021(2000). 8
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